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Abstract

While opto-genetics has proven to have tremendous value in revealing the functions of the 

macromolecular machinery in cells, it is not amenable to exploration of small molecules such as 

phospholipids (PLs). Here, we describe a redox opto-lipidomics approach based on a combination 

of high affinity light-sensitive ligands to specific PLs in mitochondria with LC-MS based redox 

lipidomics/bioinformatics analysis for the characterization of pro-apoptotic lipid signals. We 

identified the formation of mono-oxygenated derivatives of C18:2-containing cardiolipins (CLs) in 

mitochondria after the exposure of 10-nonylacridine orange bromide (NAO)-loaded cells to light. 

We ascertained that these signals emerge as an immediate opto-lipidomics response, but they 

decay long before the commencement of apoptotic cell death. We found that a protonophoric 

uncoupler caused depolarization of mitochondria and prevented the mitochondrial accumulation of 
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NAO, inhibited the formation of C18:2-CL oxidation product,s and protected cells from death. 

Redox opto-lipidomics extends the power of opto-biologic protocols to studies of small PL 

molecules resilient to opto-genetic manipulations.

Graphical abstract

About a decade of opto-genetics has yielded numerous protocols for the expression of light-

sensitive proteins that are effective in controlling and manipulating different aspects of cell 

metabolism and physiology.1,2 This has resulted in a large array of potential biomedical 

applications from neurobiology/neurology to cardiovascular research, ophthalmology, 

urology, etc.3–5 The utility of this approach for understanding the functions of small 

biomolecules, particularly identification of their signaling roles, has not been explored so far. 

One of the reasons is that, in contrast to macromolecules, selective expression and/or 

labeling of lipids with photosensitive chromophores and their targeted delivery to specific 

intracellular compartments has proven difficult.6,7

A notable exception is cardiolipin (CL)—an anionic phospholipid (PL) found almost 

exclusively in the inner mitochondrial membrane (IMM), the site of its biosynthesis by CL 

synthase (CLS).8 The unusual CL’s dimeric structure— combining two phosphatidic acid 

(PA) moieties linked via a glycerol backbone in the center—yields a highly hydrophobic yet 

dianionic hybrid molecule.8,9 This unique structure of CL makes it indispensible for the 

proper organization of the IMM and many of its bioenergetic proteins as well as for several 

mitochondrial functions as both a central regulatory metabolic and cell death platform.10 

These specific features of CLs may be used for its selective postsynthetic targeting by opto-

active probes, particularly those known to selectively accumulate on the matrix side of the 

IMM. Among the latter, 10-nonylacridine orange bromide (NAO), a fluorescent compound, 

capable of tight binding to CL,11 has been introduced for the CL detection in 

mitochondria.12 The presence of a positively charged quaternary ammonium and a 

hydrophobic nonyl moiety in NAO is believed to account for the enhanced selectivity of its 

interaction with CL—by far exceeding its binding to other mitochondrial anionic PLs 

including phosphatidylglycerol (PG), PA, and phosphatidylinositol (PI) as well as 

extramitochondrial phosphatidylserine (PS).11

Here, we have developed a novel redox opto-lipidomics approach in which selective light 

induced NAO-driven redox modifications of CLs were combined with high analytical 

resolution of LC-MS-based redox lipidomics and bioinformatics analysis. Membrane 

potential-driven selective accumulation of NAO into mitochondria resulted in light induced 

apoptosis accompanied by the generation of selectively mono-oxygenated CLs and 
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phosphatidylcholines (PCs) occurring immediately following light exposure. We further 

established that mitochondrial depolarization by a protonophoric uncoupler, carbonyl 

cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP), suppressed accumulation of these 

mono-oxygenated CL species and prevented light induced apoptosis. Our results establish 

the utility of opto-lipidomics as a new tool for studies of selective redox modifications of 

lipids, particularly mitochondrial CLs.

RESULTS AND DISCUSSION

LC-MS Characterization of Phospholidpidome of HeLa Cells

Using LC-MS, we have identified and quantified 146 PLs in HeLa cells, distributed between 

six major classes, including PC, phosphatidylethanolamine (PE), PI, PS, PG, and CL and 

different combinations of 18 fatty acids with chain lengths from 14 to 22 carbons and 

containing up to six double bonds (Table 1 shows compounds with an abundance of >1%; 

other compounds are in Supporting Information Table S1). All PLs were identified and 

quantified by high resolution mass spectrometry with mass accuracy <5 ppm and further 

confirmed by tandem mass spectrometry (MS/MS) fragmentation analysis. To minimize the 

cross inference between PL species, we employed solid phase extraction (SPE) and off-line 

two-dimensional normal phase/reverse phase HPLC-MS/MS protocols. While this approach 

has the advantage of maximized quantitative aspects, it can also suffer from the potential 

loss of information/detection, particularly with regard to extremely low abundance species. 

This explains the identified 146 major PL species rather than thousands of “rear” species in 

the lipidome of HeLa cells. Among this diversified group, polyunsaturated fatty acid 

(PUFA)-containing species—potential targets of redox opto-modifications—were 

represented by 102 molecular species.

Selective Accumulation of NAO in Mitochondria Is Membrane-Potential-Dependent

Our previous work has demonstrated that early oxidation of mitochondrial CLs is a required 

stage in the execution of the intrinsic apoptotic program leading to the release of cytochrome 

c from mitochondria into the cytosol.13 With this in mind, we tried to find the conditions 

where a photosensitizer, NAO, would be confined exclusively to mitochondria. We 

established that in the range of low concentrations of 25, 50, and 100 nM, NAO 

demonstrated excellent selectivity for mitochondria as indicated by its colocalization with a 

mitochondria-specific probe, Mitotracker Deep Red, in mouse embryonic cells (MECs; 

Figure 1a, top panel).14 Consistently, in HeLa cells, NAO at the concentration of 100 nM 

also colocalized with Mitotracker Deep Red (Figure 1a, bottom panel). While NAO has been 

shown to have a high affinity to CL,11 this occurs under conditions where the concentration 

of NAO is relatively low and most of the NAO accumulates in the IMM in a membrane 

potential manner. It should be noted, however, that other potential candidate interacting PLs, 

PG, PI, and phosphatidylinositolphosphates (PIPs) are present in mitochondria, albeit at 

lower concentrations, particularly in the inner mitochondrial membrane15—the site of NAO 

localization in functional nondepolarized mitochondria. A higher concentration of NAO (1 

μM) can result in a saturation of the mitochondrial accumulation (Supporting Information 

Figure S1), and NAO in turn binds to other nonmitochondrial PLs, partially due to 

hydrophobic and electrostatic interactions.
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Because partitioning of NAO into mitochondria is membrane-potential-(MMP) dependent,16 

we endeavored to use a protonophoric uncoupler, FCCP, to assess the specificity of NAO 

action in mitochondria. Indeed, MMP depolarization in FCCP-treated HeLa cells, indicated 

by JC-1, a mitochondrial membrane potential probe (Figure 1b), caused a dramatic drop of 

NAO mean fluorescence intensity (MFI; Figure 1c). To further explore the MMP 

dependence in NAO’s mitochondrial effects, we performed live cell imaging experiments 

using MMP-dependent and MMP-independent mitochondrial markers—

tetramethylrhodamine (TMRM) and a mitochondria-targeted genetically encoded 

fluorogenic activating protein (mFAP), respectively. In NAO treated cells, the sensitizer 

colocalized with both mFAP and TMRM, indicating its mitochondrial accumulation (top 

panel in Figure 1d). By contrast, when cells were pretreated with FCCP followed by NAO 

staining, both NAO and TMRM dyes diffused into extramitochondrial compartments 

(bottom panel in Figure 1d). Moreover, when cells were treated with FCCP after NAO 

staining, TMRM staining in cells significantly decreased (within 15 min) and NAO diffused 

from mitochondria into other cellular compartments, whereas mFAP, as expected, remained 

associated with mitochondria.

NAO Facilitates Opto-Activated Apoptosis in Both CL- and MMP-Dependent Manners

We further tested NAO as a photosensitizer of apoptotic cell death. Very few HeLa cells 

underwent apoptosis either immediately (0.5 h) or at 6 h following light exposure. By 

contrast, a significant increase of apoptotic cells was observed at 24 h, and this effect 

increased over time as evidenced by PS externalization (Figure 2a). The effect was 

dependent on the light intensity (from 2.9 to 11.4 W/cm2, Figure 2b). The light intensity 

with an irradiance of 5.7 W/cm2 was selected for the subsequent experiments. The combined 

effect of NAO plus light was synergistically higher than that of the light alone or NAO alone 

(Figure 2b). Another common biomarker of apoptosis, elevated caspase activity, was also 

observed during NAO-photosensitized cell death (Figure 2c).

To confirm the role of CL in apoptosis, we employed HeLa cells with knocked-down CL 

synthase (CLS) in which selectively lowered CL content (from 20.8 to 9.2 pmol/nmol total 

PL phosphorus) has been achieved without a difference in the levels of other major PLs (PC, 

PE, PI, PA) except a >55% increase of PG.17 Of note, a loss of more than half of the CL 

content in HeLa cells was not associated with the significant changes of bioenergetics 

parameters, including measurement of the ATP levels and the mitochondrial membrane 

potential.17 These CL-deficient HeLa cells demonstrated increased resistance to NAO-

dependent apoptosis upon light exposure (Figure 2d). In similar experiments, we established 

that NAO facilitated light-induced apoptosis in MEC cells (Supporting Information Figure 

S2).

Protonophoric uncouplers, such as FCCP, have been previously used to induce either 

mitophagy or apoptosis through depolarization of the mitochondria. In contrast, FCCP 

induced depolarization prevented specific accumulation of NAO in the inner leaflet of the 

inner mitochondrial membrane facing the matrix and suppressed photoinduced CL 

oxidation. As CL oxidation is a required mitochondrial step in the execution of the apoptotic 

program, FCCP protected cells against photoinduced NAO-mediated apoptosis. This was 
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documented by FCCP-dependent suppression of (i) PS externalization (Figure 3a), (ii) DNA 

fragmentation from TUNEL assay (Figure 3b), and (iii) caspase activation (Figure 3c). We 

were encouraged to use this protective effect of FCCP in a redox opto-lipidomics search for 

cell death signals.

Redox Opto-Lipidomics Detects Pro-Apoptotic Signals

Accumulation of irreparable damage, commonly DNA damage, triggers p53-mediated 

signaling cascades realized in the execution of an intrinsic apoptotic cell death program 

which includes CL oxidation.18 We reasoned that direct NAO-photosensitized CL oxidation 

may be associated with the immediate generation of lipid apoptotic death signals. Therefore, 

we employed the redox opto-lipidomics approach to reveal oxidatively modified PLs, 

particularly CLs, immediately following light exposure. Specifically, we performed a 

targeted lipidomics search for newly emerged oxygenated derivatives of PLs in NAO treated 

cells and established a high selectivity of light-evoked redox modifications of lipids. Out of 

102 total molecular species of PUFA−PLs amenable to oxidation, there were 13 oxygenated 

CLs, 21 oxygenated PEs, 22 oxygenated PCs, and two oxygenated PSs, whose levels 

increased to different extents immediately after illumination (Supporting Information Table 

S1). However, among all the oxygenated PLs, only the total levels of oxygenated CLs and 

PCs significantly increased (>6-fold) immediately following NAO induced light reaction 

(Figure 4a). Surprisingly, there was a 61-fold increase of mono-oxygenated CLs but no 

change of dioxygenated CLs immediately following light reaction, whereas both mono- and 

dioxygenated PCs responded similarly with only a 6.3-fold increase (Figure 4b). Thus, 

mono-oxygenation of CLs was markedly more selective during the NAO induced light 

reaction. Moreover, mono-oxygenated CLs with C18:2 demonstrated a more robust increase 

than those with C20:4 (47-fold vs 14-fold increase) immediately following NAO induced 

light reaction (Figure 4c). The maximal formation of oxygenated CLs was detected right 

after the 30 min of light exposure and gradually declined in the course of the dark incubation 

(Figure 4a, b, and c).

With regard to mechanisms of the loss of oxidized CL species in the course of dark 

incubation, we hypothesized that hydrolysis of the oxidation products might have taken 

place. Ca2+-independent phospholipases A2 have been identified as potent catalysts of 

hydrolysis of peroxidized CLs.19 To test this hypothesis, we performed normal phase LC-

MS/MS analysis of monolyso-CLs (MLCLs), one of the products of the hydrolytic 

reaction.20 We identified eight major species of MLCLs based on high accuracy m/z values 

and corresponding MS/MS fragments (Supporting Information Figure S3). The quantitative 

data showed that the total amount of MLCLs was more than 4-fold higher in the cells 

exposed to light in the presence of NAO and subsequently incubated in the dark for 48 h 

compared to NAO + Light (the 0.5 h group). The increased levels of MLCLs were not 

observed in the cells pretreated with FCCP, then exposed to light in the presence of NAO 

and incubated for 48 h in the dark. Our data indicate that hydrolysis of oxygenated CLs 

generated during NAO-photosensitized oxidation might be responsible, at least in part, for 

the decay of CL peroxidation products. For example, MLCL(18:1/18:2/ 18:1) (m/z 
1189.7658), MLCL(18:1/18:1/18:1) (m/z 1191.7769), MLCL(18:1/20:4/18:2) (m/z 
1213.7657), and MLCL(18:1/18:2/18:2) (m/z 1187.7506) might be partially generated from 
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the decay of CL(18:1/18:2/18:1/18:2+[O]) (m/z 1467.9906), CL(18:1/18:1/18:1/18:2+[O]) 

(m/z 1469.9979), CL(18:1/20:4/18:2/18:2+[O]) (m/z 1491.9906), and 

CL(18:1/18:2/18:2/18:2+[O]) (m/z 1465.9749), respectively.

To establish the association of the light induced lipid signals with the execution of the 

apoptotic program, we tested the effect of FCCP–which protected against NAO 

photosensitized apoptosis—on lipid oxidation. The only oxygenated lipid products 

suppressed both immediately and at 48 h following light exposure by FCCP were mono-

oxygenated C18:2-containing CL species (Figure 4c). Shown in Figure 4d are the 

representative mass spectra of nonoxygenated CLs from control (in black) and mono-

oxygenated CLs with C18:2 generated from NAO-loaded cells immediately following light 

exposure (in red). A representative MS/MS spectrum of mono-oxygenated CL 

(CL(18:1/18:2+[O]/18:2/18:1), [M−H]−, m/ z: 1467.9906) is demonstrated in Figure 4e.

We chose to reconfirm the possible function of C18:2-contaning oxygenated CL species as 

death signals by comparing them with the CL lipid oxidation products profiles of HeLa cells 

triggered to apoptosis by a prototypical agent, actinomycin D, previously reported to cause 

CL oxidation.13 Notably, these same oxygenated CL species we detected in light reaction 

were also identified in actinomycin D-induced apoptosis (Supporting Information Figure 

S4).

Bioinformatics Analysis of Pro-Apoptotic Oxygenated Lipid Signals in CLs

To help visualize and facilitate a more intuitive analysis of complex optolipidomics results, 

we developed a bioinformatics pipeline consisting of Venn diagrams and n-gram analysis 

commonly used in language analysis.

Venn diagrams were created to enable comparison of light with other previously studied 

apoptotic conditions as they allow highlighting the intersection of lipid oxidation product 

profiles in the presence of the different apoptosis inducing agents. The Venn diagram in 

Figure 5a compares the CL lipid oxidation product profiles obtained here in response to light 

to CL oxidation products detected during apoptosis triggered by conventional agents, such as 

actinomycin D,13 staurosporine,13 and ionizing radiation.21,22 By comparing the NAO + 

light triggered apoptosis in HeLa cells with the effects of three different cell death inducers 

in mouse embryonic cells and in vivo in mouse lung tissue, we confirmed the universal 

correlation of mono-oxygenated C18:2 CL species with the execution of an apoptotic 

program in mitochondria (Figure 5a).

N-gram analysis is a term borrowed from statistical language modeling of the co-occurrence 

of words, where N refers to the number of words (e.g., the bigram “New York”, N = 2). It 

has previously been applied to biology using aminio acids or nucleotides as the word 

equivalents.23,24 Here, we extended the approach to consider the lipid acyl chain as a novel 

word equivalent (see Methods). N-gram analysis provides an intuitive way to compare the 

frequencies and specificity of opto-lipidomic pro-apoptotic response with those triggered by 

other inducers of cell death. Assuming that one of the four acyls of CL designates a word in 

the signaling language, we found that C18:2 mono-oxygenated CLox species had the highest 

frequency in unigram analysis (Figure 5b). This high participation of C18:2ox-containing 
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CL species was also observed in other pro-apoptotic stimuli (Figure 5b). Different n-grams 

(combinations of different CL acyls) in bi-, tri-, and tetra-gram frequency plots also showed 

the same trend for oxygenated C18:2-containing CL species, but in these cases the signal 

was spread across different grams (Supporting Information Figures S5–S8). Notably, NAO

+light specifically induced apoptosis, while other stimuli (several in vitro and in vivo 
treatments and exposures of cells and animals denoted in the legends of Figure 5 and 

Supporting Information Figures S5–S8) can trigger apoptosis along with alternative death 

pathways (Figure 5b). Comparing the LC-MS results of NAO +light triggered apoptosis with 

previously obtained data where other pro-apoptotic stimuli were used, we found that mono- 

and dioxygenated C18:2-containing CL species were specific for the current experiments 

(χ-squared test, p < 0.05, Supporting Information Table S2), thus suggesting that these 

signals are specific and correlated with the execution of apoptosis.

Here, we report, for the first time, a redox opto-lipidomics approach based on a combination 

of high affinity light-sensitive ligands to specifically localized PLs using an LC-MS based 

redox lipidomics analysis and a novel lipid n-gram bioinformatics pipeline which was 

applied to the characterization of lipid cell death signals during the execution of an intrinsic 

apoptotic program in mitochondria. We identified mono-oxygenated derivatives of C18:2-

containing CLs as oxidation products formed in mitochondria after the exposure of NAO-

loaded cells to light. We ascertained that these signals emerge as immediate opto-lipidomics 

responses and are similar to those previously described among CL oxidation products 

detected during apoptosis triggered by conventional agents, such as actinomycin D,13 

staurosporine,13 and ionizing radiation.21,22 We further established that the function(s) of 

these products is realized right after the light exposure, and they decay long before the 

commencement of apoptotic cell death. By depolarizing the MMP18,19 and preventing 

mitochondrial NAO accumulation, FCCP—known to cause injury—blocked the formation 

of characteristic derivatives of oxygenated C18:2-CL products and protected cells from 

photosensitized apoptotic death.

The success of redox opto-lipidomics depends, to a large extent, on the selectivity of the 

photosensitizing ligand toward particular types of lipids. In this regard, CLs offer a 

particular advantage as this mitochondria-unique PL is localized almost exclusively to the 

IMM.25 Thus, a combination of MMP-dependent delivery to the mitochondrial matrix with a 

high affinity for CLs11 made NAO an exceptionally CL-selective opto-lipidomics sensitizer. 

NAO’s selectivity toward CL was further enhanced by the lack from the mitochondria of 

another anionic NAO target—PS, which is effectively decarboxylated to PE.26 A small but 

significant amount of PC also underwent NAO-dependent oxidation. These oxidized PCs 

were insensitive to mitochondrial depolarization by FCCP, indicating that NAO might also 

bind to PCs in extra-mitochondrial compartments, possibly in close proximity to other 

anionic PLs. However, the role of PCs in apoptotic signaling, if any, was minimal as they 

were not detected by redox lipidomic analysis in cells undergoing apoptosis triggered by 

other reagents.13 Notably, PC and PE mono-oxygenated species have been recently 

identified as potential death signals in nonapoptotic pathways of cells during ferroptosis 

associated with Gpx4-deficiency.27
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In addition to selectivity of interactions with a particular PL, chemical propensities of 

photosensitizers along with the rates of metabolic conversions of oxygenated PLs may be 

important for redox opto-lipidomics analysis. Photosensitized oxidation of lipids can 

proceed via type I or type II mechanisms.28 The former involves free radicals such as those 

formed by triplet sensitizer-reducing substrate interactions, whereas the latter typically 

involves singlet oxygen (1O2) formed by triplet sensitizer-ground state oxygen 

interactions.29 It is believed that light-induced intracellular effects of acridines are 

predominantly realized via the production of singlet oxygen.30 Therefore, we performed 

experiments in which we investigated the effects of two singlet oxygen quenchers (lycopene 

and beta-carotene)31 on light induced apoptosis. We found that both of them exerted 

significant protection against light induced apoptosis in the presence of NAO (Supporting 

Information Figure S9), suggesting that the singlet oxygen-driven reactions are significant 

contributors to CL oxidation and apoptosis. Notably, the inhibitors did not cause 100% 

protection against light induced NAO-mediated apoptosis. This suggests that alternative, 

likely type I, mechanisms can also contribute to CL photo-oxidation in the presence of NAO. 

Indeed, vitamin E—known to act as both a singlet oxygen quencher and free radical 

scavenger—was more effective in protecting against light induced cell death in the presence 

of NAO than lycopene and beta-carotene (54%, 31%, and 34% protection by vitamin E, 

lycopene, and β-carotene, respectively). While these data suggest that singlet oxygen 

mediated effects were important contributors to cell death, they also indicate that alternative, 

likely type I driven, mechanisms of photosensitization were involved. Quantitatively, this 

can be addressed by detailed analysis of CL oxidation products by LC-MS/MS 

fragmentation analysis of oxygenated fatty acid residues. Indeed, singlet oxygen attack on 

linoleoyl-containing CLs will generate 10-OOH and 12-OOH nonconjugated products, 

whereas free radical attack will yield 9-OOH and 13-OOH isomers.32 While these 

measurements are technically feasible, they require large amounts of cell/lipids for analysis 

because of the low abundance of the CL oxidation products and represent the subject of 

future studies.

Both photosensitized free radical mechanisms and singlet oxygen-driven reactions should 

yield dioxygenated PL species.33 However, only a minor presence of these products has 

been detected after NAO-sensitized oxidation of CLs, suggesting the involvement of 

effective cellular reduction mechanisms.34 This reduction may be enzymatically catalyzed 

by a well-known thiol-dependent mechanism (e.g., glutathione peroxidase 4, Gpx4) or via 

heme-peroxidase reactions (e.g., cytochrome C/CL complexes). As an illustration of the 

Gpx4-dependent pathway, we found effective TLCL-OOH reduction by Gpx4 present in 

homogenates of naïve HeLa cells but not in the homogenates of cells pretreated with a 

specific Gpx4 inhibitor, RSL335 (Supporting Information Figure S12). To demonstrate the 

effectiveness of the cytochrome c-catalyzed reaction, we performed in vitro experiments and 

showed that cytochrome c can effectively reduce tetra-linoleoyl-hydroperoxy CL (TLCL-

OOH) to tetra-linoleyl hydroxy-CL (TLCL−OH; Supporting Information Figure S11).

Many PL class-specific organelle-targeted fluorescent probes have been recently 

developed36 with a potential of being used for redox opto-lipidomics. Among those are 

recently reported improved fluorescent probes for CL.37 Recently, a powerful approach 

based on the employment of caged lipids, membrane-permeable photoactivatable derivatives 

Mao et al. Page 8

ACS Chem Biol. Author manuscript; available in PMC 2017 December 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of different PLs has been developed to specifically probe signaling pathways at the single 

cell level.3839,40 Caged lipids are designed to contain a photocleavable group attached to a 

position that is crucial for their function, thus rendering lipid analogs inactive. Light induced 

cleavage of the protective group liberates the active lipid to achieve its necessary 

intracellular concentration. While a variety of caged lipid analogs have been synthesized in 

several major classes (PA, PIs, PEs, sphingolipids, ceramides and ceramide 1-phosphate, 

triacylglycerols),38,41 no caged CLs have been reported so far. It is tempting to speculate that 

caged CLs and CLox could be instrumental to the identification of the mechanisms through 

which they facilitate the execution of apoptotic cell death. One can also assume that caged 

CL analogs may be designed with a potential to photosensitize CL oxidation.

Even though the reason why mono-oxygenated CLs significantly decrease at 48 h following 

treatment is still elusive, we speculate that certain phospholipase (e.g., Cld1) in cells might 

be responsible for eliminating these potential death signals, which explains the formation of 

MLCL after a period of time (Supporting Information Figure S3). Our previous work has 

identified CL oxidation as a required stage of execution of the mitochondrial stage of the 

intrinsic apoptotic program triggered by a number of toxic agents such as actinomycin D, 

staurosporine, 6-hydroxydopamine, etc.13,42 In these cases, oxidative catalysis occurred 

within complexes of CL with cytochrome c (cyt c) acting as a peroxidase13 whereby CL 

oxidation products were necessary for the release of cyt c from mitochondria into the cytosol 

and its subsequent role in the formation of apoptosomes, activation of caspases, and 

subsequent proteolytic events culminating in the completion of the apoptotic program.43,44 

The exact proximate mechanisms of CL oxidation products in facilitating the release of cyt c 

remain enigmatic, although candidate pathways may include their interactions with pro-

apoptotic proteins, Bax/Bak, in the outer mitochondrial membrane.45 The series of pro-

apoptotic processes that include translocation of the required cytosolic proteins into the 

outer mitochondrial membrane (Bax/Bak) and vice versa from mitochondria into the cytosol 

(cyt c) initiated by CL oxidation products proceed over a period of 9–24 h.13,46 In line with 

this, we observed a significant increase of cell death (∼20%) at 24 h and its further 

enhancement (34%) at 48 h following NAO photosensitization. We believe that NAO-

mediated light-driven CL oxidation triggered similar pro-apoptotic processes whose 

development over time caused typical manifestations of apoptotic cell death such as DNA 

fragmentation, caspase 3/7 activation, and PS externalization.

NAO applications in redox opto-lipidomics may also be useful for the identification of 

critical targets for cancer phototherapy. Indeed, the well documented propensity of cancer 

cells to repair DNA from damaging effects of radiation and cytotoxic drugs is of major 

significance in their profound resistance to radiation and chemotherapy.47 This resulted in 

attempts to explore photosensitizing molecules capable of inducing mitochondria-mediated 

apoptosis as a potentially effective alternative approach.47 Among several mitochondria-

targeted photodynamic therapy reagents,48,49 phthalocyanines (e.g., Pc4) were reportedly 

localized in the proximity of CLs.50 The identification of NAO induced CL oxidation 

products correlating with the execution of apoptotic cell death signals may serve as an 

important guide in optimizing the efforts in successful photodynamic therapy of cancer.
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Overall, our results extend the remarkable achievements and power of opto-genetics in 

studies of macromolecule-driven intracellular pathways to the field of small PL molecules 

resilient to opto-genetic manipulations.

METHODS

This section describes key experiments only; an extended experimental section is provided 

in the Supporting Information.

Irradiation Treatments

Cells were incubated with 100 nM NAO for 30 min in whole medium (DMEM-15% FBS) 

and washed with medium before exposure to light. Irradiations were performed by using an 

ARC lamp device (Oriel Instruments) with a 435 nm long pass color filter (Thorlabs Inc.). 

The irradiance of 5.7 W/cm2 was used in most experiments except those employed in the 

experiment (Figure 2a) for the optimization of irradiance conditions where light intensities 

range from 2.9 to 11.4 W/cm2.

Microscopic Imaging of NAO and Mitochondria

Cells were seeded in 35 mm glass-bottomed tissue culture dishes (MatTek Corp.) prior to 

infection with an adenoviral vector expressing mitochondrially targeted fluorogen activating 

protein (mFAP).51 At 48 h following transfection, cells were pretreated with NAO (25, 50, 

or 100 nM) and 200 nM tetramethylrhodamine (TMRM) or 200 nM MitoTracker Deep Red 

(M-22426; Invitrogen) for 30 min. Malachite green (5 nM) was added at 15 min prior to 

imaging to reveal the mFAP transgene (thereby defining the mitochondria52). Cells were 

washed with medium before imaging. All images were acquired using a Nikon Ti inverted 

microscope (Nikon Inc.) using NIS-Elements Software (Nikon Inc.) and a 60× 1.49NA oil 

optic and equipped with a SpectraX diode based light source (Lumencor), Chroma 

Technology Inc. filer sets, and an ORCA-Flash4.0 V2 digital cMOS camera (Hamamatsu).

Analysis of PLs and Their Oxygenated Molecular Species by SPE-2D-LC-MS

The analysis flowchart is shown in Supporting Information Figure S10. Lipids were 

extracted using the Folch procedure and redissolved in 250 μL of chloroform/methanol (2:1; 

v/v).53 Lipid phosphorus was measured by phosphorus measurement using a micro-

method.54 A certain amount of lipid extract corresponding to 3 μg of phosphorus, which was 

spiked with internal standards, was dried under nitrogen, and reconstituted in 0.5 mL of 

hexane/chloroform/methanol (95:3:2; v/v/v). The following solid phase extraction (SPE) 

was conducted as previously described with slight modification.55 The SPE protocol is 

described in detail in the Supporting Information. Each fraction from SPE was further 

injected into the normal phase high performance liquid chromatograph (HPLC) on a Luna 

silica column (2.0 mm × 15 cm, 3 μm, Phenomenex) as the first dimension. The condition of 

LC-MS/MS was optiomized by injecting chemical standard of tetra-linoleyl CL. The LC-

MS/MS method was provided in detail in the Supporting Information. Additionally, the LC-

MS/MS method for measuring MLCL was also provided in the Supporting Information.
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Lipid Identification and Analysis

Data files from the control samples were analyzed by SimLipid 4.30 (PREMIER Biosoft). 

Each nonoxygenated PL except CL was identified by matching its corresponding MS/MS 

spectrum. Nonoxygenated CLs were identified manually by Xcalibur Qual (Thermo 

Scientific). Based on all the PLs identified, possible oxygenated species were projected, 

including plus one and two oxygen atoms. Each lipid was further quantified by Xcalibur 

Quan (Thermo Scientific) based on its accurate m/z value with an accuracy of 5 ppm.

Bioinformatics

A four-way Venn diagram analysis was applied to the lists of oxygenated CL species 

identified from the current study and three other studies. The Venn diagram was plotted 

using VENNY 2.0 (http://bioinfogp.cnb.csic.es/tools/venny/).

N-gram analysis (specifically uni-, bi-, tri-, and tetra-gram analysis) was carried out using 

the lists of oxygenated CL species from the current study and the other previous 

ones19,21,22,56–63 using the text2wngram program from the CMU-Cambridge Statistical 

Language Modeling Toolkit v2 (http://svr-www.eng.cam.ac.uk/~prc14/toolkit.html). This 

tool computes the frequencies of single words (unigrams), pairs of correlative words 

(bigrams), and in general, the frequencies of groups of N correlative words (N-grams) in a 

text. To analyze the frequencies of different species of oxygenated CL with this tool, we 

need to transform the structural information on CL molecules into word-like units. To this 

end, we assumed that each of the four acyls of CL designates a word in the lipid signaling 

language, and that each CL molecule designated a complete meaningful sentence. Hence, to 

compute different grams we first coded the different types of acyl chains in CL molecules as 

L:P–O where L represents the length of the chain, P the unsaturated position in the chain, 

and O the oxygen containing substituent in such an unsaturated position (as represented 

elsewere in the present work). Then, we computed unigrams on that set of coded CL acyl 

chains (this is frequencies of each of the coded CL acyl chains). To compute bi-, tri-, and 

tetra-grams, only combinations of two, three, and four correlative coded acyl chains within 

the CL molecule were considered, respectively. To be consistent with the assumed model 

where each CL molecule designated a complete meaningful sentence, we did not allow for 

the analysis of N-grams consisting of acyl chains of more than one CL molecule.

Results from previous studies were grouped into two different categories in vitro and in vivo 
according to the nature of each of the referred to experiments in order to provide an easier 

comparison to the previous study. We assessed the statistical significance of differences 

between frequencies of unigrams observed in the current work and frequencies of such 

unigrams in previous studies (grouped in in vivo and in vitro categories) using χ-squared 

tests. Frequencies of all N-grams and the χ-squared test were computed using R.64

Statistical Analysis

The data are presented as mean ± standard deviation (SD) values from three replicates. Heat 

maps of fold change were generated by Microsoft Office Excel 2013 to visualize the trend 

and identify the death signals. Statistical analysis was performed using either an unpaired 

Student’s t-test or the one-way analysis of variance with Tukey’s postanalysis. Homogeneity 
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of variance was assumed with a 95% confidence interval level. Results from at least n = 3 

with p < 0.05 were considered significant. All statistical analyses were performed using 

SPSS software Standard version 18.0 (SPSS Inc.).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This work was supported by the National Institutes of Health (EB17268, ES020693, U19AIO68021, HL114453, 
NS076511, NS061817, NS052315, CA 165065), the National Institute for Occupational Safety and Health 
(OH008282), the National Center for Research Resources (S10RR023461), Human Frontier Science Program 
(HFSP-RGP0013/2014), and the Barth Syndrome Foundation, Inc. and the Barth Syndrome Foundation of Canada. 
We are grateful to M. Bruchez (Carnegie Mellon University) for providing dyes and reagents associated with the 
FAP technology, and M. Larsson of the Center for Biologic Imaging at the University of Pittsburgh for generation 
of adenoviral FAP constructs.

LIST OF ABBREVIATIONS

CL cardiolipin

CLS cardiolipin synthase

DMEM Dulbecco’s Modified Eagle’s Medium

FBS fetal bovine serum

FCCP carbonyl cyanide p-trifluoromethoxyphenyl hydrazine

HPLC high performance liquid chromatography

IMM inner mitochondrial membrane

JC-1 5,5′,6,6′-tetrachloro1,1′,3,3′-tetraethylbenzimidazolyl carbocyanine iodide

MEC mouse embryonic cell

MMP mitochondrial membrane potential

NAO 10-nonylacridine orange bromide

OMM outer mitochondrial membrane

PC phosphatidylcholine

PE phosphatidylethanolamine

PG phosphatidylglycerol

PI phosphatidylinositol

PIP phosphatidylinositol phosphate

PL phospholipid
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PS phosphatidylserine

PUFA polyunsaturated fatty acid

SPE solid phase extraction

TMRM tetramethylrhodamine
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Figure 1. 
Selective accumulation of NAO in mitochondria shown to be membrane-potential-

dependent. (a) On the upper panel, MECs were incubated with NAO (25, 50, or 100 nM) and 

MitoTracker Deep Red (200 nM) for 30 min before imaging. On the lower panel, HeLa cells 

were treated the same way as MECs except NAO concentration was 100 nM, which was 

used for the following experiments. (b) Cells were pretreated with FCCP (40 μM) for 30 min 

before membrane potential was examined. Shown on the upper panel is the pseudocolor plot 

of JC-1 green versus red fluorescence in flow cytometry and on the lower panel are averaged 

quantitative assessments. (c) Cells were incubated with NAO for 30 min before light 

exposure (30 min). FCCP (40 μM) was added to cells either before (FCCP before) or after 

(FCCP after) NAO staining for 30 min prior to light exposure followed by the measurement 

of NAO staining. Shown on the upper panel are flow cytometry histograms of NAO staining, 

and on the lower panel are averaged quantitative results. (d) Cells infected with an 

adenoviral vector expressing mitochondrially targeted fluorogen activating protein (mFAP) 

were pretreated with vehicle control (upper panel) or FCCP (lower panel) for 30 min 

followed by the incubation with NAO and TMRM for 30 min before imaging. (e) Cells were 

treated similarly as in d except FCCP was given after NAO and TMRM treatments. 

Mitotracker (red), mFAP (purple), NAO (green), TMRM (red), and overlay (yellow). Mean 

± SD (N = 3). *p < 0.05 vs controls.
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Figure 2. 
NAO facilitating opto-activated apoptosis in a CL-dependent manner. (a) Cells were treated 

with NAO (100 nM) for 30 min and light exposure (5.7 W/cm2) for 30 min, and PS 

externalization by Annexin V binding was analyzed at different time points (0.5, 6, 24, 48, 

and 72 h) after treatments. (b) Cells were treated with NAO for 30 min and exposed to light 

at different intensities (W/cm2) for 30 min. At 24 h after treatment, cells were collected for 

analysis of PS externalization. (c) NAO-loaded cells were exposed to light as described in a, 

and caspase activity was measured at 24 h. (d) WT and CL-deficient (induced by CLS 

knockdown) HeLa cells were treated with NAO and light as described in a. Cells were 

collected at different time points (0.5, 24, 48, and 72 h) for analysis of PS externalization. 

CLS KD: cardiolipin synthase knockdown. Mean ± SD (N = 3). #p < 0.05 vs nontreated 

controls. *p < 0.05 vs light only treated controls; $p < 0.05 vs WT cells under the same 

conditions.
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Figure 3. 
FCCP shown to protect cells against apoptosis induced by NAO and light exposure. Cells 

were pretreated with 40 μM FCCP before NAO staining and light exposure. (a) Cells were 

collected for analysis of PS externalization by Annexin V binding at 24 h after treatments. 

(b) Cells were collected for analysis of TUNEL and DAPI staining at 48 h after treatments. 

Shown on the left panel are representative images from control, NAO + light, and NAO + 

light + FCCP groups. The red color is the TUNEL stain overlaid on the DAPI (nuclear) 

stain. Shown on the right are averaged quantitative results showing the number of TUNEL 

positive cells (normalized to the number of DAPI positive cells) in these three groups. (c) 

Measurement of caspase activity at 24 h after NAO and light exposures. Mean ± SD (N = 3). 

*p < 0.05 vs nontreated controls. #p < 0.05 vs NAO and light treatments.
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Figure 4. 
Redox opto-lipidomics identifying C18:2 mono-oxygenated CL species as pro-apoptotic 

signals (a) Total levels of oxygenated PLs in HeLa cells following the exposure to NAO and 

light in the absence and presence of FCCP. The amounts of oxygenated species in major PL 

classes were normalized to the total contents of PLs with oxidizable polyunsaturated fatty 

acyls (PUFA). (b) Levels of mono-oxygenated CLs and PCs. The amounts of each 

oxygenated species were normalized to the total contents of PLs with oxidizable PUFAs. (c) 

The levels of mono-oxygenated CLs containing C18:2 or C20:4. The amount of each 

oxygenated species was normalized to the total contents of CLs with C18:2 and C20:4. 

Inset: Spectra of oxygenated CLs from control cells (black) and NAO + light exposed cells 

(red) collected immediately after the light. All values on panels a, b, and c are means ± SD 

(N = 3); also shown numerically are fold-changes induced by NAO + Light vs controls. (d) 

An overlay of a typical MS spectrum of nonoxygenated CL species from the control sample 

(black) and of oxygenated CL species (red) from the NAO + Light (0.5 h) sample (red) 

indicates the mono-oxygenated C18:2-containing CL species. Note the different scales on 

the black and red y axes of intensity. (e) Representative MS/MS spectrum of mono-

oxygenated CL(18:1/18:2-[O]/18:2/18:1), with an m/z value of 1467.9906 ([M–H]−).
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Figure 5. 
Bioinformatics analysis verifying the commonality of mono-oxygenated C18:2 CL species 

as pro-apoptotic lipid signals. (a) The four-way Venn diagram demonstrates three mono-

oxygenated C18:2 CL species common to the four different pro-apoptotic conditions. The 

Venn diagram was plotted using VENNY 2.0, http://bioinfogp. cnb.csic.es/tools/venny/. (b) 

Unigram frequencies of observed oxidized acyl chains upon apoptosis induction by different 

stimuli highlight mono-oxygenated C18:2 CL species. A, NAO-light (current work); B, 

actinomycin D (2012);61 C, actinomycin D (2014);19 D, controlled cortical impact;19 E, 

gamma irradiation (2008);22 F, gamma irradiation (2009);57 G, gamma irradiation (2011, in 
vitro);22 H, gamma irradiation (2011, in vivo);22 I, hyperoxia;60 J, mechanical injury;58 K, 

actinomycin D (current work); L, rotenone (2013);56 M, rotenone (2015);62 N, 

staurosporine;65 O, single walled carbon nanotubes;63 and P, whole body radiation.19 In the 

inset boxplot, the same frequencies are shown by grouping the stimuli as follows: NAO-light 

(this work) in red, in vitro (B, C, F, G, J, K, L, and N) in blue, and in vivo (D, E, H, I, M, O, 

and P) in green. The p value of each comparison by χ-squared test was shown in Supporting 

Information Table S2.
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